首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194700篇
  免费   17740篇
  国内免费   9428篇
电工技术   12636篇
技术理论   13篇
综合类   13308篇
化学工业   30795篇
金属工艺   10857篇
机械仪表   12499篇
建筑科学   15084篇
矿业工程   5769篇
能源动力   5797篇
轻工业   14227篇
水利工程   3695篇
石油天然气   11277篇
武器工业   1634篇
无线电   23604篇
一般工业技术   22960篇
冶金工业   9215篇
原子能技术   2213篇
自动化技术   26285篇
  2024年   404篇
  2023年   3488篇
  2022年   5818篇
  2021年   8691篇
  2020年   6752篇
  2019年   5342篇
  2018年   6054篇
  2017年   6808篇
  2016年   6048篇
  2015年   8254篇
  2014年   10389篇
  2013年   12380篇
  2012年   13640篇
  2011年   14325篇
  2010年   12426篇
  2009年   11738篇
  2008年   11312篇
  2007年   10464篇
  2006年   10494篇
  2005年   8975篇
  2004年   6109篇
  2003年   5174篇
  2002年   4736篇
  2001年   4245篇
  2000年   3938篇
  1999年   4392篇
  1998年   3626篇
  1997年   3034篇
  1996年   2804篇
  1995年   2312篇
  1994年   1868篇
  1993年   1337篇
  1992年   1097篇
  1991年   799篇
  1990年   595篇
  1989年   486篇
  1988年   376篇
  1987年   243篇
  1986年   200篇
  1985年   124篇
  1984年   110篇
  1983年   80篇
  1982年   84篇
  1981年   67篇
  1980年   65篇
  1979年   30篇
  1978年   25篇
  1977年   25篇
  1976年   26篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Huang  Keke  Wei  Ke  Li  Yonggang  Yang  Chunhua 《Applied Intelligence》2021,51(11):7718-7734
Applied Intelligence - With the development of sensor and communication technology, industrial systems have accumulated a large amount of data. This data has provided new perspectives and methods...  相似文献   
82.
The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate-dependent persistent photocurrent is observed, arising from the modulation of substrate-trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug-related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity.  相似文献   
83.
Plasmonic gold nanocrystal represents plasmonic metal nanomaterials, and has a variety of unique and beneficial properties, such as optical signal enhancement, catalytic activity, and photothermal properties tuned by local temperature, which are useful in physical, chemical, and biological applications. In addition, the inherent properties of predictable programmability, sequence specificity, and structural plasticity provide DNA nanostructures with precise controllability, spatial addressability, and targeting recognition, serving as ideal ligands to link or position building blocks during the self-assembly process. Self-assembly is a common technique for the organization of prefabricated and discrete nanoparticle blocks for the construction of extremely sophisticated nanocomposites. To this end, the integration of DNA nanotechnology with Au nanomaterials, followed by assembly of DNA-functionalized Au nanomaterials can form novel functional Au nanomaterials that are difficult to obtain through conventional methods. Here, recent progress in DNA-assembled Au nanostructures of various shapes is summarized, and their functions are discussed. The fabrication strategies that employ DNA for the self-assembly of Au nanostructures, including dimers, tetramers, satellites, nanochains, and other nanostructures with more complex geometric configurations are first described. Then, the characteristic optical properties and applications of biosensing, bioimaging, drug delivery, and therapy are discussed. Finally, the remaining challenges and prospects are elucidated.  相似文献   
84.
Uniformly dispersed boron nitride nanosheets (BNNSs) reinforced silicon nitride (Si3N4) composites were prepared by surface modification assisted flocculation combined with SPS sintering. In order to improve the dispersibility of the BNNSs in the composites, the liquid phase stripped BNNSs are surface functionalized by a two-step covalently modification. The amino-modified BNNSs (NH2-BNNSs) and Si3N4 powders have opposite surface potential, mixed evenly by electrostatic interaction during flocculation. The results showed that mechanical properties of Si3N4 composites were obviously enhanced by adding NH2-BNNSs. The fracture toughness and bending strength of Si3N4 composites added 0.75 wt% NH2-BNNSs were increased by 34% and 28%, respectively, compared with monolithic Si3N4. Toughening mechanisms are synergistic action of the torn, pull-out or bridging of BNNSs and crack deflection mechanisms with microstructural analyzes. The dielectric properties of the Si3N4 ceramics are also improved after the addition of NH2-BNNSs.  相似文献   
85.
采用直流磁控溅射和后退火氧化工艺在p型GaAs单晶衬底上成功制备了n-VO_2/pGaAs异质结,研究了不同退火温度和退火时间对VO_2/GaAs异质结性能的影响,并分析其结晶取向、化学组分、膜层质量以及光电特性。结果表明,在退火时间2 h和退火温度693 K下能得到相变性能最佳的VO_2薄膜,相变前后电阻变化约2个数量级。VO_2/GaAs异质结在308 K、318 K和328 K温度下具有较好的整流特性,对应温度下的阈值跳变电压分别为6.9 V、6.6 V和6.2 V,该结果为基于VO_2相变特性的异质结光电器件的设计与应用提供了可行性。  相似文献   
86.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
87.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
88.
Copper catalysts are widely studied for the electroreduction of carbon dioxide (CO2) to value-added hydrocarbon products. Controlling the surface composition of copper nanomaterials may provide the electronic and structural properties necessary for carbon-carbon coupling, thus increasing the Faradaic efficiency (FE) towards ethylene and other multi-carbon (C2+) products. Synthesis and catalytic study of silver-coated copper nanoparticles (Cu@Ag NPs) for the reduction of CO2 are presented. Bimetallic CuAg NPs are typically difficult to produce due to the bulk immiscibility between these two metals. Slow injection of the silver precursor, concentrations of organic capping agents, and gas environment proved critical to control the size and metal distribution of the Cu@Ag NPs. The optimized Cu@Ag electrocatalyst exhibited a very low onset cell potential of −2.25 V for ethylene formation, reaching a FE towards C2+ products (FEC2+) of 43% at −2.50 V, which is 1.0 V lower than a reference Cu catalyst to reach a similar FEC2+. The high ethylene formation at low potentials is attributed to enhanced C C coupling on the Ag enriched shell of the Cu@Ag electrocatalysts. This study offers a new catalyst design towards increasing the efficiency for the electroreduction of CO2 to value-added chemicals.  相似文献   
89.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
90.
The strengthening method of multi-element M-site solid solution is a common approach to improve mechanical properties of MAX phase ceramic. However, the research on capability of multi-element A-site solid solution to improve mechanical properties has rarely been reported. Thereupon, quasi-high-entropy MAX phase ceramic bulks of Ti2(Al1?xAx)C and Ti3(Al1?xAx)C2 (A = Ga, In, Sn, x = 0.2, 0.3, 0.4) were successfully synthesized by in situ vacuum hot pressing via multi-elements solid solution. The multi-elements solid solution in single-atom thick A layer was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy as well as by energy dispersive X-ray spectroscopy mappings. Effects of doped multi-elements contents on the phase, microstructure, mechanical properties, and high temperature tribological behaviors were studied. Results demonstrated that the Vickers hardness, anisotropic flexural strength, fracture toughness, and tribological properties of Ti–Al–C based MAX ceramics could be remarkably improved by constitution of quasi-high-entropy MAX phase in A layers. Moreover, the strengthening and wear mechanisms were also discussed in detail. This method of multi-element solid solution at A-site provides new way to enhance mechanical properties of other MAX phase ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号